Setting occupational exposure limits for unstudied pharmaceutical intermediates using an in vitro parallelogram approach.

نویسنده

  • Mark S V Maier
چکیده

Occupational exposure limits for unstudied pharmaceutical synthetic intermediates are often established under the assumption that penultimate and near-ultimate intermediates have the same structure-activity and dose-response as the ultimate active pharmaceutical ingredient (API). This is seldom the case because moieties that render biological activity to the API are often protected or modified for synthetic purposes. Incorrectly assuming that intermediates have biological activity similar to the API may lead to excessive exposure controls that in turn impose unnecessary ergonomic hazards on workers and greatly reduces the scale and efficiency of production. Instead of assuming intermediates have the same toxicity profile as the API, it is feasible to use a parallelogram approach to establish exposure limits for synthetic intermediates using low-cost in vitro data. By comparing in vitro responses of intermediates to structurally similar data-rich molecules such as the API, occupational exposure categories can be established for unstudied intermediates. In this contribution (1) methods for setting occupational exposure limits for data-poor compounds are reviewed; (2) applications and limitations of in vitro assays are discussed; (3) two exposure categorization examples are presented that rely on an in vitro parallelogram approach; and (4) inherent safeguards for uncertainties in pharmaceutical risk assessment are identified. In vitro hazard and dose-response information for unstudied intermediates that are structurally similar to well-studied APIs can greatly enhance the basis for setting occupational exposure limits for unstudied synthetic intermediates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Banding in the Pharmaceutical Industry

The pharmaceutical industry embraced the concept of control banding many years ago. Control banding is a process of assigning a compound to a hazard category that corresponds to a range of airborne concentrations – and the engineering controls, administrative controls, and personal protective equipment – needed to ensure safe handling. While the terminology used was different, the high potency ...

متن کامل

Occupational toxicology and the control of exposure to pharmaceutical agents at work.

BACKGROUND The pharmaceutical industry employs >350 000 people worldwide in operations including research and development (R&D), manufacturing, sales and marketing. Workers employed in R&D and manufacturing sectors are potentially exposed to drug substances in the workplace that are designed to modify physiology and also to chemical precursors that are potentially hazardous to health. Pharmaceu...

متن کامل

Upper limits for exceedance probabilities under the one-way random effects model.

In this article, we propose statistical methods for setting upper limits on (i) the probability that the mean exposure of an individual worker exceeds the occupational exposure limit (OEL) and (ii) the probability that the exposure of a worker exceeds the OEL. The proposed method for (i) is obtained using the generalized variable approach, and the one for (ii) is based on an approximate method ...

متن کامل

Background, approaches and recent trends for setting health-based occupational exposure limits: a minireview.

The setting of occupational exposure limits (OELs) are founded in occupational medicine and the predictive toxicological testing, resulting in exposure-response relationships. For compounds where a No-Observed-Adverse-Effect-Level (NOAEL) can be established, health-based OELs are set by dividing the NOAEL of the critical effect by an overall uncertainty factor. Possibly, the approach may also b...

متن کامل

Setting Occupational Exposure Limits for Genotoxic Substances in the Pharmaceutical Industry.

In the pharmaceutical industry, genotoxic drug substances are developed for life-threatening indications such as cancer. Healthy employees handle these substances during research, development, and manufacturing; therefore, safe handling of genotoxic substances is essential. When an adequate preclinical dataset is available, a risk-based decision related to exposure controls for manufacturing is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicology mechanisms and methods

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2011